4.5 Article Proceedings Paper

Modulation of phospholipase D-mediated phosphatidylglycerol formation by differentiating agents in primary mouse epidermal keratinocytes

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamcr.2003.08.006

Keywords

aquaporin-3; glycerol; phorbol 12-myristate 13-acetate (PMA); phospholipase D-2 (PLD-2); transphosphatidylation

Funding

  1. NIAMS NIH HHS [AR 45212] Funding Source: Medline

Ask authors/readers for more resources

The major component of the epidermis, keratinocytes, must continuously proliferate and differentiate to form the mechanical and water permeability barrier of the skin. Our previous data have suggested a potential role in these processes for phospholipase D (PLD), an enzyme that hydrolyzes phospholipids to generate phosphatidic acid. In the presence of primary alcohols, PLD also catalyzes a transphosphatidylation reaction to produce phosphatidylalcohols, and this characteristic has been exploited to monitor the activity of PLD in intact cells. In this report, PLD was demonstrated to utilize the physiological alcohol glycerol to form phosphatidylglycerol (PG) in vitro. In intact primary murine epidermal keratinocytes treated for 24 h with elevated extracellular Ca2+ levels, but not 1,25-dihydroxyvitamin D-3, incubation with radioactive glycerol resulted in an increase in PLD-mediated radiolabeled PG production. This effect was dose-dependent and biphasic, with maximal PG formation detected after exposure to an intermediate (125 muM) Ca2+ concentration. Furthermore, the biphasic nature of the response was due, in part, to a corresponding biphasic change in glycerol uptake. Finally, short-term treatment of keratinocytes with phorbol 12-myristate 13-acetate (PMA) failed to increase PG synthesis and inhibited glycerol uptake. Since (1) PMA is reported to activate PLD-1 to a greater extent than PLD-2, (2) 1,25-dihydroxyvitamin D-3 increases the expression/activity of PLD-1 in keratinocytes, and (3) PLD-2 is co-localized with a glycerol channel in keratinocyte membrane microdomains, we speculate that radiolabeled PG production from radioactive glycerol is a measure of PLD-2 activation in these cells. Our results also suggest that PLD-mediated PG synthesis may be regulated at the level of both PLD activity and alcohol substrate availability via changes in glycerol uptake. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available