4.7 Article

Effect of reinforcement connectivity on the elasto-plastic behavior of aluminum composites containing sub-micron alumina particles

Journal

ACTA MATERIALIA
Volume 51, Issue 20, Pages 6105-6121

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1359-6454(03)00431-2

Keywords

particulate reinforced composites; aluminum; interpenetrating microstructure; compression test; mean field analysis

Ask authors/readers for more resources

The mechanical properties of composites consisting of an aluminum matrix with 34 and 37 vol.% sub-micron Al2O3 particles were studied in compression for two reinforcement architectures: interconnected and discontinuous. Both the elastic and plastic behaviors of these composites are successfully modeled using a self-consistent approach: the classical self-consistent and the three-phase self-consistent models for the interconnected and discontinuous architectures, respectively. At ambient temperature, an interconnected architecture offers only a modest increase in stiffness and strength over a discontinuous architecture of equal volume fraction. At elevated temperatures (250, 500 and 600 degreesC), the interconnected reinforcement becomes increasingly more effective at strengthening the composites. However, the relative increase in strength due to interconnectivity can only be exploited at small strains (1-5%) due to the early development of compressive flow instabilities in the interconnected composites. While microstructural damage controls the instability strain of the interconnected composites at ambient temperature, their low strain-hardening coefficient is the main contribution to flow instabilities at elevated temperature. (C) 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available