4.5 Article

Proteasome inhibition arrests neurite outgrowth and causes dying-back degeneration in primary culture

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 74, Issue 6, Pages 906-916

Publisher

WILEY
DOI: 10.1002/jnr.10806

Keywords

lactacystin; retrograde degeneration; axon; ubiquitin proteasome pathway

Categories

Ask authors/readers for more resources

Proteasome inhibitors such as lactacystin were first isolated when assaying their ability to stimulate neurite outgrowth in neuronal-like cell lines; however, their effect on neurites in primary culture has been largely neglected. We report here that lactacystin causes immediate arrest of nerve growth factor (NGF)-stimulated neurite outgrowth in sympathetic and sensory explant cultures. This is followed by neurite degeneration that in sympathetic cultures has a distinctive dying-back morphology. Remarkably, this occurs even at concentrations below that required to induce neurite outgrowth in PC12 cells. Thus, lactacystin opposes rather than potentiates the effect of NGF on sympathetic neurite outgrowth and the role of the ubiquitin proteasome pathway in growth and long-term maintenance of axons and dendrites differs from that in neuritogenesis in neuronal-like cell lines. Retrograde degeneration caused by blocking of the ubiquitin proteasome pathway may mimic some aspects of gracile axonal dystrophy, a dying-back axonopathy in mice caused by ubiquitin hydrolase (Uch-I1) deficiency, and may be relevant to human neurodegenerative diseases involving ubiquitination or proteasome abnormalities. (C) 2003 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available