4.4 Article Proceedings Paper

Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes

Journal

THIN SOLID FILMS
Volume 445, Issue 2, Pages 358-366

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/S0040-6090(03)01185-4

Keywords

indium-tin oxide; organic light-emitting diodes; surface treatments; oxygen-plasma

Ask authors/readers for more resources

Oxygen-plasma treatment of indium-tin oxide (ITO) anodes is now widely used as one of the most effective ways to improve the device performance of organic light-emitting diodes (LEDs). However, the role of oxygen-plasma treatment has not been clearly understood. We have performed detailed studies of the surface and bulk of the ITO thin films exposed to oxygen-plasma. We employed a multitude of experimental techniques, including X-ray and ultraviolet photoelectron spectroscopies, atomic force microscopy, dynamic contact angle measurement, four-point probe and Hall measurements to investigate the changes induced by the plasma. We have also analyzed the device characteristics of polymer LEDs fabricated with these anodes. We found significant modifications of the physico-chemical, morphological, transport and optical properties of the oxygen-plasma treated ITO. Although oxygen-plasma does not show any measurable etching effect, it induces considerable changes leading to an increase in work function, electron carrier concentration and conductivity. It also increases the surface energy and polarity. We relate these modifications to enhancement of the device performance, such as electroluminescence efficiency and lifetime, through their effects on hole injection, and interface structure and stability. Finally, we show that even in the presence of a hole-transport layer such as a poly(styrene sulphonate)-doped poly(3,4-ethylene dioxythiophene) (PEDOT:PSS) inserted between the anode and the emissive polymer layer, oxygen-plasma treatment of the ITO anodes is still beneficial for the devices. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available