4.6 Article

All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry

Journal

OPTICS LETTERS
Volume 28, Issue 24, Pages 2506-2508

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.28.002506

Keywords

-

Categories

Ask authors/readers for more resources

We demonstrate all-optical switching action in a nonlinear photonic crystal cross-waveguide geometry with instantaneous Kerr nonlinearity, in which the transmission of a signal can be reversibly switched on and off by a control input. Our geometry accomplishes both spatial and spectral separation between the signal and the control in the nonlinear regime. The device occupies a small footprint of a few micrometers squared and requires only a few milliwatts of power at a 10-Gbit/s switching rate by use of Kerr nonlinearity in AlGaAs below half the electronic bandgap. We also show that the switching dynamics, as revealed by both coupled-mode theory and finite-difference time domain simulations, exhibits collective behavior that can be exploited to generate high-contrast logic levels and all-optical memory. (C) 2003 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available