4.6 Article

Proinflammatory actions of thromboxane receptors to enhance cellular immune responses

Journal

JOURNAL OF IMMUNOLOGY
Volume 171, Issue 12, Pages 6389-6395

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.171.12.6389

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI001389] Funding Source: Medline
  2. NIDDK NIH HHS [DK38103] Funding Source: Medline

Ask authors/readers for more resources

Metabolism of arachidonic acid by the cyclo-oxygenase (COX) pathway generates a family of prostanoid mediators. Nonsteroidal anti-inflammatory drugs (NSAIDs) act by inhibiting COX, thereby reducing prostanoid synthesis. The efficacy of these agents in reducing inflammation suggests a dominant proinflammatory role for the COX pathway. However, the actions of COX metabolites are complex, and certain prostanoids, such as PGE(2), in some circumstances actually inhibit immune and inflammatory responses. In these studies, we examine the hypothesis that anti-inflammatory actions of NSAIDs may be due, in part, to inhibition of thromboxane A(2) synthesis. To study the immunoregulatory actions of thromboxane A(2), we used mice with a targeted disruption of the gene encoding the thromboxane-prostanoid (TP) receptor. Both mitogen-induced responses and cellular responses to alloantigen were substantially reduced in TP-/- spleen cells. Similar attenuation was observed with pharmacological inhibition of TP signaling in wild-type splenocytes, suggesting that reduced responsiveness was not due to subtle developmental abnormalities in the TP-deficient mice. The absence of TP receptors reduced immune-mediated tissue injury following cardiac transplant rejection, an in vivo model of intense inflammation. Taken together, these findings show that thromboxane augments cellular immune responses and inflammatory tissue injury. Specific inhibition of the TP receptor may provide a more precise approach to limit inflammation without some of the untoward effects associated with NSAIDs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available