4.6 Article

Aurora-a kinase maintains the fidelity of early and late mitotic events in HeLa cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 51, Pages 51786-51795

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M306275200

Keywords

-

Ask authors/readers for more resources

Aurora-A, a member of the Aurora/Ipl1-related kinase family, is overexpressed in various types of cancer and considered to play critical roles in tumorigenesis. To better understand the pathological effect of Aurora-A activation, it is first necessary to elucidate the physiological functions of Aurora-A. Here, we have investigated the roles of Aurora-A in mitotic progression with the small interfering RNA, antibody microinjection, and time lapse microscopy using human cells. We demonstrated that suppression of Aurora-A by small interfering RNA caused multiple events to fail in mitosis, such as incorrect separation of centriole pairs, misalignment of chromosomes on the metaphase plate, and incomplete cytokinesis. Antibody microinjection of Aurora-A into late G(2) cells induced dose-dependent failure in separation of centriole pairs at prophase, indicating that Aurora-A is essential for proper separation of centriole pairs. When we injected anti-Aurora-A antibodies into prometaphase cells that had separated their centriole pairs, chromosomes were severely misaligned on the metaphase plate, indicating that Aurora-A is required for proper movement of chromosomes on the metaphase plate. Furthermore, inhibition of Aurora-A at metaphase by microinjected antibodies prevented cells from completing cytokinesis, suggesting that Aurora-A also has important functions in late mitosis. These results strongly suggest that Aurora-A is essential for many crucial events during mitosis and that the phosphorylation of a series of substrates by Aurora-A at different stages of mitosis may promote diverse critical events in mitosis to maintain chromosome integrity in human cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available