4.5 Article

mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 467, Issue 4, Pages 566-580

Publisher

WILEY
DOI: 10.1002/cne.10955

Keywords

in situ hybridization; cyclic nucleotides; PDEs

Ask authors/readers for more resources

Recent evidence indicates that cGMP plays an important role in neural development and neurotransmission. Since cGMP levels depend critically on the activities of phosphodiesterase (PDE) enzymes, mRNA expression patterns were examined for several key cGMP-hydrolyzing PDEs (type 2 [PDE2], 5 [PDE5], and 9 [PDE9]) in rat brain at defined developmental stages. Riboprobes were used for nonradioactive in situ hybridization on sections derived from embryonic animals at 15 days gestation (E15) and several postnatal stages (PO, P5, P10, P21) until adulthood (3 months). At all stages PDE9 mRNA was present throughout the whole central nervous system, with highest levels observed in cerebellar Purkinje cells, whereas PDE2 and PDE5 mRNA expression was more restricted. Like PDE9, PDE5 mRNA was abundant in cerebellar Purkinje cells, although it was observed only on and after postnatal day 10 in these cells. In other brain regions, PDE5 mRNA expression was minimal, detected in olfactory bulb, cortical layers, and in hippocampus. PDE2 mRNA was distributed more widely, with highest levels in medial habenula, and abundant expression in olfactory bulb, olfactory tubercle, cortex, amygdala, striatum, and hippocampus. Double immunostaining of PDE2, PDE5, or PDE9 mRNAs with the neuronal marker NeuN and the glial cell marker glial fibrillary acidic protein revealed that these mRNAs were predominantly expressed in neuronal cell bodies. Our data indicate that three cGMP-hydrolyzing PDE families have distinct expression patterns, although specific cell types coexpress mRNAs for all three enzymes. Thus, it appears that differential expression of PDE isoforms may provide a mechanism to match cGMP hydrolysis to the functional demands of individual brain regions. (C) 2003 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available