4.3 Article

High G/C content of cohesive overhangs renders DNA end joining Ku-independent

Journal

DNA REPAIR
Volume 3, Issue 1, Pages 13-21

Publisher

ELSEVIER
DOI: 10.1016/j.dnarep.2003.08.014

Keywords

non-homologous DNA end joining; Ku; Xenopus egg extract; protruding single strands; cohesive overhangs; DNA ligation

Funding

  1. NIGMS NIH HHS [GM 62113] Funding Source: Medline

Ask authors/readers for more resources

Ku plays an important role in the repair of double strand DNA breaks by non-homologous DNA end joining (NHEJ). Ku is thought to exert its function by aligning the two DNA ends. A previous study showed that the joining of certain cohesive DNA ends in cell-free in vitro reactions was independent of Ku [Mol. Cell. Biol. 19 (1999) 2585]. To investigate a possible correlation between Ku-dependence of DNA end joining reactions and the strength of base pair interactions between cohesive ends, we constructed a series of repair substrates with either 3'-or 5'-overhangs. which consisted entirely of either A/T or G/C residues. We found that after Ku-immunodepletion of the extract, the joining of cohesive ends that associate by the formation of four A:T base pairs was reduced, while the joining of ends that associate through four G:C base pairs was unaffected or slightly stimulated. The precision of the repair was not reduced in Ku-independent reactions. Our results indicate that the requirement for Ku is dependent on how stably the two cohesive DNA ends can associate by base-pairing. Two independent assays for protein-DNA interactions did not reveal any differences in Ku binding to substrates with A/T and G/C overhangs, suggesting that in this system Ku is recruited to the repair site regardless of whether it is functionally required or not. The finding that Ku is dispensable for efficient and precise joining of ends with cohesive G/C overhangs also suggests that alignment of DNA ends may be the sole function of Ku during NHEJ. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available