4.7 Article

Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds

Journal

POWDER TECHNOLOGY
Volume 139, Issue 1, Pages 7-20

Publisher

ELSEVIER
DOI: 10.1016/j.powtec.2003.10.005

Keywords

DQMOM; fluidized beds; population balance; aggregation; breakage

Ask authors/readers for more resources

Most of today's computational fluid dynamics (CFD) calculations for gas-solid flows are carried out assuming that the solid phase is monodispersed, whereas it is well known that in many applications, it is characterized by a particle size distribution (PSD). In order to properly model the evolution of a polydisperse solid phase, the population balance equation (PBE) must be coupled to the continuity and momentum balance equations. In this work, the recently formulated direct quadrature method of moments (DQMOM) is implemented in a multi-fluid CFD code to simulate particle aggregation and breakage in a fluidized-bed (FB) reactor. DQMOM is implemented in the code by representing each node of the quadrature approximation as a distinct solid phase. Since in the multi-fluid model, each solid phase has its own momentum balance, the nodes of the DQMOM approximation are convected with their own velocities. This represents an important improvement with respect to the quadrature method of moments (QMOM) where the moments are tracked using an average solid velocity. Two different aggregation and breakage kernels are tested and the performance of the DQMOM approximation with different numbers of nodes are compared. These results show that the approach is very effective in modeling solid segregation and elutriation and in tracking the evolution of the PSD, even though it requires only a small number of scalars. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available