4.8 Article

Peroxisome proliferator-activated receptor-γ activation inhibits tumor progression in non-small-cell lung cancer

Journal

ONCOGENE
Volume 23, Issue 1, Pages 100-108

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206885

Keywords

PPAR-gamma; NSCLC; Erk1/2; differentiation

Funding

  1. NCI NIH HHS [R01 CA094121-02, R01 CA094121-01A1, R01 CA094121] Funding Source: Medline
  2. NHLBI NIH HHS [P050 HL60289, HL57243, K08 HL070068] Funding Source: Medline

Ask authors/readers for more resources

The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors and a crucial regulator of cellular differentiation. Differentiation-inducing and antiproliferative effects of PPAR-gamma suggest that PPAR-gamma agonists might be useful as effective anticancer agents. Few studies have examined the efficacy of these agonists in animal models of tumorigenesis, and their mechanism(s) of action are still not clear. Our studies indicate higher PPAR-gamma expression in primary tumors from non-small-cell lung cancer (NSCLC) patients when compared to normal surrounding tissue. The expression of PPAR-gamma was also observed in several NSCLC lines. The treatment of lung adenocarcinoma cells (A549) with troglitazone (Tro), a PPAR-gamma ligand, enhanced PPAR-gamma transcriptional activity and induced a dose-dependent inhibition of A549 cell growth. The observed growth arrest was predominantly due to the inhibition of cell proliferation without significant induction of apoptosis. Cell cycle analysis of Tro-treated cells revealed a cell cycle arrest at G(0)/G(1) with concomitant downregulation of G(0)/G(1) cyclins D and E. In addition, Tro treatment stimulated sustained Erk1/2 activation in A549 cells, suggesting the activation of a differentiation-inducing pathway. Furthermore, treatment of A549 tumor-bearing SCID mice with Tro or Pio inhibited primary tumor growth by 66.7% and significantly inhibited the number of spontaneous lung metastatic lesions. Collectively, our data demonstrate that activation of PPAR-gamma impedes lung tumor progression and suggest that PPAR-gamma ligands may serve as potential therapeutic agents for NSCLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available