4.5 Article

Tyrosine phosphatase inhibition induces loss of blood-brain barrier integrity by matrix metalloproteinase-dependent and -independent pathways

Journal

BRAIN RESEARCH
Volume 995, Issue 2, Pages 184-196

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2003.10.002

Keywords

blood-brain barrier; tight junction; occludin; matrix metalloproteinase; tyrosin phosphatase inhibition; proteolysis

Categories

Ask authors/readers for more resources

Tight junctions between endothelial cells of brain capillaries form the structural basis of the blood-brain barrier (BBB), which controls the exchange of molecules between blood and CNS. Regulation of cellular barrier permeability is a vital and complex process involving intracellular signalling and rearrangement of tight junction proteins. We have analysed the impact of tyrosine phosphatase inhibition on tight junction proteins and endothelial barrier integrity in a primary cell culture model based on porcine brain capillary endothelial cells (PBCEC) that closely mimics the BBB in vitro. The tyrosine phosphatase inhibitor phenylarsine oxide (PAO) induced increased matrix metalloproteinase (NIMP) activity, which was paralleled by severe disruption of cell-cell contacts and proteolysis of the tight junction protein occludin. ZO-1 and claudin-5 were not affected. Under these conditions, the transendothelial electrical resistance (TEER) was markedly reduced. PAO-induced occludin proteolysis could be prevented by different MMP inhibitors. Pervanadate (PV) reduced the TEER similar to PAO, but did not increase MMP activity. Cell-cell contacts of PV-treated cells appeared unaffected, and occludin proteolysis did not occur. Our results suggest that tyrosine phosphatase inhibition can influence barrier properties independent of, but also correlated to MMPs. Evidence is given for a role of MMPs in endothelial tight junction regulation at the BBB in particular and probably at tight junctions (TJs) in general. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available