4.7 Article

Premelting dynamics in a continuum model of frost heave

Journal

JOURNAL OF FLUID MECHANICS
Volume 498, Issue -, Pages 227-244

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112003006761

Keywords

-

Ask authors/readers for more resources

Frost heave is the process by which the freezing of water-saturated soil causes the deformation and upward thrust of the ground surface. We describe the fundamental interactions between phase change and fluid flow in partially frozen, saturated porous media (soils) that are responsible for frost heave. Water remains only partially frozen in a porous medium at temperatures below 0degreesC owing both to the depression of the freezing temperature at curved phase boundaries and to interfacial premelting caused by long-range intermolecular forces. We show that while the former contributes to the geometry of fluid pathways, it is solely the latter effect that generates the forces necessary for frost heave. We develop a simple model describing the formation and evolution of the ice lenses (layers of ice devoid of soil particles) that drive heave, based on integral force balances. We determine conditions under which either (i) a single ice lens propagates with no leading frozen fringe, or (ii) a single, propagating ice lens is separated from unfrozen soil by a partially frozen fringe, or (iii) multiple ice lenses form.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available