4.8 Article

Protein topology determines binding mechanism

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2534828100

Keywords

-

Ask authors/readers for more resources

Protein recognition and binding, which result in either transient or long-lived complexes, play a fundamental role in many biological functions, but sometimes also result in pathologic aggregates. We use a simplified simulation model to survey a range of systems where two highly flexible protein chains form a homodimer. In all cases, this model, which corresponds to a perfectly funneled energy landscape for folding and binding, reproduces the macroscopic experimental observations on whether folding and binding are coupled in one step or whether intermediates occur. Owing to the minimal frustration principle, we find that, as in the case of protein folding, the native topology is the major factor that governs the choice of binding mechanism. Even when the monomer is stable on its own, binding sometimes occurs fastest through unfolded intermediates, thus showing the speedup envisioned in the fly-casting scenario for molecular recognition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available