4.7 Article

Imatinib mesylate affects the development and function of dendritic cells generated from CD34+ peripheral blood progenitor cells

Journal

BLOOD
Volume 103, Issue 2, Pages 538-544

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2003-03-0975

Keywords

-

Categories

Ask authors/readers for more resources

Imatinib mesylate (STI571) is a competitive Bcr-Abl tyrosine kinase inhibitor and has yielded encouraging results in treatment of chronic myelogenous leukemia (CML) and gastrointestinal stroma tumors (GISTs). Apart from inhibition of the Abl protein tyrosine kinases, it also shows activity against platelet-derived growth factor receptor (PDGF-R), c-Kit, Abl-related gene (ARG), and their fusion proteins while sparing other kinases. In vitro studies have revealed that imatinib mesylate can inhibit growth of cell lines and primitive malignant progenitor cells in CML expressing Bcr-Abl. However, little is known about the effects of imatinib mesylate on nonmalignant hematopoietic cells. In the current study we demonstrate that in vitro exposure of mobilized human CD34(+) progenitors to therapeutic concentrations of imatinib mesylate (1-5 muM) inhibits their differentiation into dendritic cells (DCs). DCs obtained after 10 to 16 days of culture in the presence of imatinib mesylate showed concentration-dependent reduced expression levels of CD1a and costimulatory molecules such as CD80 and CD40. Furthermore, exposure to imatinib mesylate inhibited the induction of primary cytotoxic T-lymphocyte (CTL) responses. The inhibitory effects of imatinib mesylate were accompanied by down-regulation of nuclear localized RelB protein. Our results demonstrate that imatinib mesylate can act on normal hematopoietic cells and inhibits the differentiation and function of DCs, which is in part mediated via the nuclear factor kappaB signal transduction pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available