4.6 Article

Charge transport in highly efficient iridium cored electrophosphorescent dendrimers

Journal

JOURNAL OF APPLIED PHYSICS
Volume 95, Issue 2, Pages 438-445

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1633336

Keywords

-

Ask authors/readers for more resources

Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)(3) dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available