4.7 Article

The role of off-fault damage in the evolution of normal faults

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 217, Issue 3-4, Pages 399-408

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0012-821X(03)00601-0

Keywords

fault slip profiles; damage; afar normal faults

Ask authors/readers for more resources

Recent measurements of slip profiles on normal faults have found that they are usually triangular in shape. This has been explained to be a consequence of on-fault processes such as slip-dependent friction. However, the recent observation that cumulative slip profiles on normal faults and fault systems in Afar are both triangular and self-similar excludes this explanation and requires some form of off-fault deformation. Here, we use elastic modelling to show that large triangular zones of off-fault damage can explain the observed triangular slip profiles provided damage is anisotropic in the form of cracks sub-parallel to the fault. Our modelling suggests that these triangular damage zones result from the enlargement of the crack tip damage area as the fault (or system) lengthens. Our modelling also demonstrates that different types of 'barriers' can cause the slip profiles to terminate abruptly at one or both fault ends, as observed in Afar and elsewhere. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available