4.7 Article

Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma

Journal

CLINICAL CANCER RESEARCH
Volume 10, Issue 2, Pages 770-776

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-0793-03

Keywords

-

Categories

Funding

  1. PHS HHS [R01-50947, P01-78378, P50-100707] Funding Source: Medline

Ask authors/readers for more resources

Purpose: The aim of this study was to test the efficacy of telomestatin, an intramolecular G-quadruplex intercalating drug with specificity for telomeric sequences, as a potential therapeutic agent for multiple myeloma. Experimental Design: We treated ARD, ARP, and MM1S myeloma cells with various concentrations of telomestatin for 7 days and evaluated for telomerase activity. Myeloma cells were treated with the minimal effective telomestatin concentration for 3-5 weeks. Every 7(th) day the fraction of live cells was determined by trypan blue exclusion, aliquots of cells were removed for various molecular assays, and the remaining cells were replated at the same cell number and at the same concentration of telomestatin. Telomere length, apoptosis, and gene expression changes were monitored as described in detail in Materials and Methods. Results: Telomestatin treatment led to inhibition of telomerase activity, reduction in telomere length, and apoptotic cell death in ARD, MM1S, and ARP myeloma cells. Gene expression profile after 1 and 7 days of telomestatin treatment revealed greater than or equal to2-fold change in only 6 (0.027%) and 51 (0.23%) of 33,000 genes surveyed, respectively. No changes were seen in expression of genes involved in cell cycle, apoptosis, DNA repair, or recombination. Conclusions: These results demonstrate that telomestatin exerts its antiproliferative and proapoptotic effects in myeloma cells via inhibition of telomerase and subsequent reduction in telomere length. We conclude that telomerase is an important potential therapeutic target for multiple myeloma therapy, and G-quadruplex interacting agents with specificity for binding to telomeric sequences can be important agents for additional evaluation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available