4.6 Article

Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices

Journal

LANGMUIR
Volume 20, Issue 2, Pages 348-356

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la034753l

Keywords

-

Ask authors/readers for more resources

The creation of nonfouling surfaces is one of the major prerequisites for microdevices for biomedical and analytical applications. Poly(ethylene glycol) (PEG), a water soluble, nontoxic, and nonimmunogenic polymer has the unique ability of reducing nonspecific protein adsorption and cell adhesion and, therefore, is generally coupled with a wide variety of surfaces to improve their biocompatibility. The performance of these modified surfaces for long-term biomedical applications largely depends on the stability of these PEG films. To this end, we have investigated the stability of covalently coupled ultrathin PEG films on silicon in aqueous in vivo like conditions for a period of 4 weeks. The PEG-modified silicon substrates were incubated in PBS (37 degreesC, pH 7.4, 5% CO2) for different periods of time and then characterized using the techniques of ellipsometry, contact angle measurement, X-ray photoelectron spectroscopy, and atomic force microscopy. The ability of the PEG-modified surfaces to control protein fouling was examined by protein adsorption studies using fluorescein isothiocyanate labeled bovine serum albumin and ellipsometry. Furthermore, the ability of these films to control fibroblast adhesion was examined. Studies suggest that the PEG-modified surfaces retain their protein and cell repulsive nature even though the PEG film thickness decreases for the period of investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available