3.8 Article

Calfection:: a novel gene transfer method for suspension cells

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.bbaexp.2003.11.016

Keywords

transient transtection; mammalian cell; suspension; calcium; 293 cell; BHK; CHO; large scale

Ask authors/readers for more resources

We have developed a novel method called Calfection for gene delivery to and protein expression from suspension-cultivated mammalian cells. Plasmid DNA was simply diluted into a calcium chloride solution and then added to the cell culture for transfection. We evaluated and optimized this approach using suspension-adapted HEK293 cells grown in 12-well plates that were shaken on an orbital shaker. Highest expression levels were obtained when cells were transfected at a density of 5 x 10(5) cells/ml in the presence of 9 mM calcium and 5 mug/ml of plasmid DNA while maintaining a culture pH of 7.6 at the time of transfection. Suspension-adapted BHK 21 and CHO DG 44 cells could also be transfected using this method. Calfection differs from the widely known calcium phosphate coprecipitation technique. The physico-chemical composition of the DNA interacting complexes is not yet known. The transfection cocktail, DNA in a calcium chloride solution, remained highly efficient during long-term storage at temperatures ranging from room temperature to -80degreesC. In contrast, calcium phosphate-DNA cocktails are only efficient for gene transfer when prepared fresh. Furthermore, passing the calcium-plasmid DNA mixture through a 0.2-mum filter did not compromise protein expression, whereas calcium phosphate-DNA coprecipitates were retained by the filter. High protein expression levels, a limited number of manipulations and the possibility to filter the cocktail make the Calfection approach suitable for both large-scale transfection in bioreactors and for high-throughput transfection experiments in microtiter plates. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available