4.8 Article

Coupling a natural receptor protein with an artificial receptor to afford a semisynthetic fluorescent biosensor

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 126, Issue 2, Pages 490-495

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja035631i

Keywords

-

Ask authors/readers for more resources

An artificial receptor and a signal transducer have been engineered on a lectin (saccharide-binding protein) surface by a post-photoaffinity labeling modification method. Saccharide binding can be directly and selectively read out by the fluorescence changes of the fluorophore via photoinduced electron transfer (PET) mode. Fluorescence titration with various saccharides reveals that molecular recognition by the artificial receptor is successfully coupled to the native binding site of the lectin, producing a novel fluorescent saccharide biosensor showing modulated specificity and enhanced affinity. Designed co-operativity between artificial and native molecular recognition modules was quantitatively demonstrated by the comparison of the binding affinities, and it represents a new strategy in molecular recognition. By using appropriate artificial receptors and various native lectins, this approach may provide many new semisynthetic biosensors for saccharide derivatives such as glycolipids and glycopeptides/proteins. An extended library of lectin-based biosensors is envisioned to be useful for glycome research, a newly emerging field of the post-genomic era.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available