4.6 Review

Self-organized glycoclusters along DNA: Effect of the spatial arrangement of galactoside residues on cooperative lectin recognition

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 10, Issue 2, Pages 352-359

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200305465

Keywords

cooperative effects; glycoclusters; lectin recognition; oligonucleotides; self-organization

Ask authors/readers for more resources

We describe herein the relationship between the spatial arrangement of self-organized galactose clusters and lectin recognition. beta-Galactose-modified deoxyuridine phosphoramidite was synthesized and applied to solid-phase synthesis to provide 18-, 20-, and 22-mers of site-specifically galactosylated oligodeoxynucleotides (Gal-ODNs). These Gal-ODNs were self-organized through hybridization with the corresponding 18-, 20-, and 22-mers of half-sliding complementary ODNs (hsc-ODNs) to give periodic galactoside clusters. The self-organization of ODNs was confirmed by size exclusion chromatography and gel electrophoresis. The binding of the Gal-clusters to the FITC-labeled RCA(120) lectin was analyzed by monitoring the change in fluorescence intensity. The assembly of 20-mer Gal-ODN with the 20-mer hsc-ODN was strongly and co-operatively recognized by the lectin. The 18-mer assembly was bound more weakly and less cooperatively, and the 22-mer assembly was minimally bound to the lectin. RCA(120) lectin recognized not only the density of galactoside residues, but also the spatial arrangement. The size of the Gal cluster was estimated from the association constant of Gal-ODN with hsc-ODN. The relationship between lectin-recognition and Gal-cluster size is also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available