4.6 Article

Chemical tailoring of porous silica xerogels: Local structure by vibrational spectroscopy

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 10, Issue 2, Pages 392-398

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200305079

Keywords

hydrophobicity; IR spectroscopy; silicon; siloxane rings; sol-gel processes

Ask authors/readers for more resources

Monolithic porous silica xerogels were synthesized by the sol-gel process, and their local structure was analysed by vibrational spectroscopy. The silica alcogels were prepared by a two-step hydrolytic polycondensation of tetraethoxysilane (TEOS) in isopropanol, with a water/TEOS molar ratio of 4. The hydrolysis step was catalysed by hydrochloric acid (HCl), with different HCl/TEOS molar ratios (ranging from 0.0005 to 0.009), and the condensation step was catalysed by ammonia (NH3), with different NH3/HCl molar ratios (ranging from 0.7 to 1.7). After appropriate ageing, the alcogels were washed with isopropanol and subcritically dried at atmospheric pressure. The diffuse reflectance infrared Fourier transform (DRIFT) spectra were analysed in terms of the main siloxane rings that form the silica particles, taking into account the splitting of the nu(as)Si-O-Si mode into pairs of longitudinal and transverse optic components, by long-range Coulomb interactions. It was proven that the proportion of residual silanol groups (which correlates with hydrophilicity), and the fraction of siloxane 6-rings (which correlates with porosity) may be tailored by adequate catalytic conditions, mostly by the hydrolysis pH. This was explained in terms of the reactions' mechanisms taking place in the two-step sol-gel process followed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available