4.7 Article

Structure of the integrin α2β1-binding collagen peptide

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 335, Issue 4, Pages 1019-1028

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2003.11.030

Keywords

collagen; triple helix; integrin binding

Ask authors/readers for more resources

We have determined the 1.8 Angstrom crystal structure of a triple helical integrin-binding collagen peptide (IBP) with sequence (Gly-Pro-Hyp)(2)-Gly-Phe-Hyp-Gly-Glu-Arg-(Gly-Pro-Hyp)(3). The central GFOGER hexapeptide is recognised specifically by the integrins alpha2beta1, alpha1beta1, alpha10beta1 and alpha11beta1. These integrin/collagen interactions are implicated in a number of key physiological processes including cell adhesion, cell growth and differentiation, and pathological states such as thrombosis and tumour metastasis. Comparison of the IBP structure with the previously determined structure of an identical collagen peptide in complex with the integrin alpha2-I domain (IBPc) allows the first detailed examination of collagen in a bound and an unbound state. The IBP structure shows a direct and a water-mediated electrostatic interaction between Glu and Arg side-chains from adjacent strands, but no intra-strand interactions. The interactions between IBP Glu and Arg side-chains are disrupted upon integrin binding. A comparison of IBP and IBPc main-chain conformation reveals the flexible nature of the triple helix backbone in the imino-poor GFOGER region. This flexibility could be important to the integrin-collagen interaction and provides a possible explanation for the unique orientation of the three GFOGER strands observed in the integrin-IBPc complex crystal structure. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available