4.6 Article

Cloning of a novel phospholipase C-δ isoform from Pacific purple sea urchin (Strongylocentrotus purpuratus) gametes and its expression during early embryonic development

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2003.12.029

Keywords

fertilization; calcium; phospholipase C; PLC delta; egg; sperm; embryo; sea urchin

Ask authors/readers for more resources

Calcium (Ca2+) is a ubiquitous intracellular messenger, controlling a diverse range of cellular processes, including fertilization and development of the embryo. One of the key mechanisms involved in triggering intracellular calcium release is the generation of the second messenger inositol-1,4,5-phosphate (IP3) by the phospholipase C (PLC) class of enzymes. Although five distinct forms of PLC have been identified in mammals (beta, gamma, delta, epsilon, and zeta), only one, PLCgamma, has thus far been detected in echinoderms. In the present study, we describe the isolation of a cDNA encoding a novel PLC isoform of the delta (delta) subclass, PLC-deltasu, from the egg of the Pacific purple sea urchin Strongylocentrotus purpuratus. We also demonstrate the presence of this PLC within the sperm and in the early embryo. The PLC-deltasu cDNA (2.44 kb) encodes a 742 amino acid polypeptide with an open reading frame of 84.6 kDa and a pI of 6.04. All of the characteristic domains found in mammalian PLCdelta isoforms (PH domain, EF hands, an X-Y catalytic region, and a C2 domain) are present in PLC-deltasu. A homology search revealed that PLC-deltasu shares most sequence identity with bovine PLCdelta2 (39%). We present evidence that PLC-deltasu is expressed in unfertilized eggs, fertilized eggs, and in the early embryo. In addition to Northern and polymerase chain reaction (PCR) analyses, in situ hybridization experiments further demonstrated that the embryonic regions within which the PLC-deltasu transcript can be detected during early embryonic development are associated with the highest levels of proliferative activity, suggesting a possible involvement with metabolism or cell cycle regulation. (C) 2003 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available