4.6 Article

Stat3 modulates heat shock 27 kDa protein expression in breast epithelial cells

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2003.12.048

Keywords

HSP27; stat3; HSP90; short interfering RNA; breast carcinoma

Funding

  1. NCI NIH HHS [CA096714] Funding Source: Medline

Ask authors/readers for more resources

The constitutive activation of signal transducer and activator of transcription 3 (Stat3) is frequently detected in breast carcinoma cell lines but not in normal breast epithelial cells. Stat3 has been classified as an oncogene because activated Stat3 can mediate oncogenic transformation in cultured cells and tumor formation in nude mice. In this study, we investigated potential Stat3 regulated genes in breast cells. Upon expression of Stat3-C, a constitutively active Stat3 form, in nonmalignant telomerase immortalized breast cells (TERT), cell lysate was subjected to 2-dimensional (2-D) protein gel analysis. Our results showed that heat shock 27 kDa protein (HSP27) was markedly induced by Stat3-C expression. Further analysis demonstrated that phosphorylation of HSP27 at serine residue 78 was induced by Stat3-C in TERT breast cells as well as in MCF-10A and MDA-MB-453 breast cells. RTPCR result confirmed that HSP27 mRNA was induced by Stat3-C in TERT cells. As the result of Stat3 knock-down by Stat3 short interfering RNA oligonucleotides in MDA-MB-468 human breast carcinoma cells, HSP27 was markedly reduced consistent with Stat3 reduction. Furthermore, we observed that Stat3 was physically associated with HSP27 and HSP90 in MDA-MB-468 breast carcinoma cells. Taken together, our findings demonstrate that constitutively activated Stat3 up-regulates HSP27 and may facilitate phosphorylation of HSP27 at serine residue 78. The up-regulation of HSP27 may be one of the underlying mechanisms with which aberrant Stat3 signaling induces cell malignancies. (C) 2003 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available