4.7 Article

Noisy FitzHugh-Nagumo model:: From single elements to globally coupled networks -: art. no. 026202

Journal

PHYSICAL REVIEW E
Volume 69, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.69.026202

Keywords

-

Ask authors/readers for more resources

We study the noisy FitzHugh-Nagumo model, representative of the dynamics of excitable neural elements, and derive a Fokker-Planck equation for both a single element and for a network of globally coupled elements. We introduce an efficient way to numerically solve this Fokker-Planck equation, especially for large noise levels. We show that, contrary to the single element, the network can undergo a Hopf bifurcation as the coupling strength is increased. Furthermore, we show that an external sinusoidal driving force leads to a classical resonance when its frequency matches the underlying system frequency. This resonance is also investigated analytically by exploiting the different time scales in the problem.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available