4.5 Article

Quantitative diffusion imaging with steady-state free precession

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 51, Issue 2, Pages 428-433

Publisher

WILEY
DOI: 10.1002/mrm.10708

Keywords

apparent diffusion coefficient; steady-state free precession; diffusion imaging; rapid volumetric imaging

Ask authors/readers for more resources

The addition of a single, unbalanced diffusion gradient to the steady-state free precession (SSFP) imaging sequence sensitizes the resulting signal to free diffusion. Unfortunately, the confounding influence of both longitudinal (T-1) and transverse (T-2) relaxation on the diffusion-weighted SSFP (dwSSFP) signal has made it difficult to quantitatively determine the apparent diffusion coefficient (ADC). Here, a multistep method in which the T-1, T-2, and spin density (M-o) constants are first determined using a rapid mapping technique described previously is presented. Quantitative ADC can then be determined through a novel inversion of the appropriate signal model. The accuracy and precision of our proposed method (which we term DESPOD) was determined by comparing resulting ADC values from phantoms to those calculated from traditional diffusion-weighted echo planar imaging (dwEPI) images. Error within the DESPOD-derived ADC maps was found to be less than 3%, with good precision over a biologically relevant range of ADC values. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available