4.6 Article

The essential involvement of cross-talk between IFN-γ and TGF-β in the skin wound-healing process

Journal

JOURNAL OF IMMUNOLOGY
Volume 172, Issue 3, Pages 1848-1855

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.172.3.1848

Keywords

-

Categories

Ask authors/readers for more resources

Several lines of in vitro evidence suggest the potential role of IFN-gamma in angiogenesis and collagen deposition, two crucial steps in the wound healing process. In this report, we examined the role of IFN-gamma in the skin wound healing process utilizing WT and IFN-gamma KO mice. In WT mice, excisional wounding induced IFN-gamma mRNA and protein expression by infiltrating macrophages and T cells, with a concomitant enhancement of IL-12 and IL-18 gene expression. Compared with WT mice, IFN-gamma KO mice exhibited an accelerated wound healing as evidenced by rapid wound closure and granulation tissue formation. Moreover, IFN-gamma KO mice exhibited enhanced angiogenesis with augmented vascular endothelial growth factor mRNA expression in wound sites, compared with WT mice, despite a reduction in the infiltrating neutrophils, macrophages, and T cells. IFN-gamma KO mice also exhibited accelerated collagen deposition with enhanced production of TGF-beta1 protein in wound sites, compared with WT mice. Furthermore, the absence of IFN-gamma augmented the TGF-beta(1) -mediated signaling pathway, as evidenced by increases in the levels of total and phosphorylated Smad2 and a reciprocal decrease in the levels of Smad7. These results demonstrate that there is crosstalk between the IFN-gamma/Stat1 and TGF-beta1/Smad signaling pathways in the wound healing process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available