4.6 Article

A cytomegalovirus inhibitor of gamma interferon signaling controls immunoproteasome induction

Journal

JOURNAL OF VIROLOGY
Volume 78, Issue 4, Pages 1831-1842

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.78.4.1831-1842.2004

Keywords

-

Categories

Ask authors/readers for more resources

Both human and mouse cytomegaloviruses (HCMV and MCMV) avoid peptide presentation through the major histocompatibillity complex (MHC) class I pathway to CD8(+) T cells. Within the MHC class I pathway, the vast majority of antigenic peptides are generated by the proteasome system, a multicatalytic protease complex consisting of constitutive subunits, three of which can be replaced by enzymatically active gamma interferon (IFN-gamma)-inducible subunits, i.e., LMP2, LMP7, and MECL1, to form the so-called immunoproteasomes. Here, we show that steady-state levels of immunoproteasomes are readily formed in response to MCMV infection in the liver. In contrast, the incorporation of immunoproteasome subunits was prevented in MCMV-infected, as well as HCW-infected, fibroblasts in vitro. Likewise, the expression of the IFN-gamma-inducible proteasome regulator PA28alphabeta was also impaired in MCMV-infected cells. Both MCMV and HCMV did not alter the constitutive-subunit composition of proteasomes in infected cells. Quantitative assessment of LMP2, MECL1, and LMP7 transcripts revealed that the inhibition of immunoproteasome formation occurred at a pretranscriptional level. Remarkably, a targeted deletion of the MCMV gene M27, encoding an inhibitor of STAT2 that disrupts IFN-gamma receptor signaling, largely restored transcription and protein expression of immunoproteasome subunits in infected cells. While CMV block peptide transport and MHC class I assembly by posttranslational strategies, immunoproteasome assembly, and thus the repertoire of proteasomal peptides, is controlled by pretranscriptional mechanisms. We hypothesize that the blockade of immunoproteasome formation has considerable consequences for shaping the CD8(+)-T-cell repertoire during the effector phase of the immune response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available