4.7 Article Proceedings Paper

Velocity adaptation of spatio-temporal receptive fields for direct recognition of activities: an experimental study

Journal

IMAGE AND VISION COMPUTING
Volume 22, Issue 2, Pages 105-116

Publisher

ELSEVIER
DOI: 10.1016/j.imavis.2003.07.002

Keywords

motion; spatio-temporal filtering; scale-space; recognition

Ask authors/readers for more resources

This article presents an experimental study of the influence of velocity adaptation when recognizing spatio-temporal patterns using a histogram-based statistical framework. The basic idea consists of adapting the shapes of the filter kernels to the local direction of motion, so as to allow the computation of image descriptors that are invariant to the relative motion in the image plane between the camera and the objects or events that are studied. Based on a framework of recursive spatio-temporal scale-space, we first outline how a straightforward mechanism for local velocity adaptation can be expressed. Then, for a test problem of recognizing activities, we present an experimental evaluation, which shows the advantages of using velocity-adapted spatio-temporal receptive fields, compared to directional derivatives or regular partial derivatives for which the filter kernels have not been adapted to the local image motion. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available