4.7 Article

The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease

Journal

BRAIN
Volume 127, Issue -, Pages 420-430

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/brain/awh054

Keywords

DJ-1; Parkinson's disease; immunohistochemistry; 2D gel electrophoresis; paraquat

Funding

  1. Parkinson's UK [G-4029] Funding Source: Medline

Ask authors/readers for more resources

Two mutations in the DJ-1 gene on chromosome1p36 have been identified recently to cause early-onset, autosomal recessive Parkinson's disease. As no information is available regarding the distribution of DJ-1 protein in the human brain, in this study we used a monoclonal antibody for DJ-1 to map its distribution in frontal cortex and substantia nigra, regions invariably involved in Parkinson's disease. Western blotting of human frontal cortex showed DJ-1 to be an abundant protein in control, idiopathic Parkinson's disease, cases with clinical and pathological phenotypes of Parkinson's disease with R98Q polymorphism for DJ-1, and in progressive supranuclear palsy (PSP) brains. We also showed that DJ-1 immunoreactivity (IR) was particularly prominent in astrocytes and astrocytic processes in both control and Parkinson's disease frontal cortex, whereas neurons showed light or no DJ-1 IR. Only occasional Lewy bodies (LBs), the pathological hallmarks of Parkinson's disease, showed faint DJ-1 IR, localized to the outer halo. In preclinical studies we showed that DJ-1 is expressed in primary hippocampal and astrocyte cultures of mouse brain. By 2D gel analysis we also showed multiple pI isoforms for DJ-1 ranging between 5.5-6.6 in both control and Parkinson's disease brains, whilst exposure of M17 cells to the oxidizing agent paraquat was manifested as a shift in pI of endogenous DJ-1 towards more acidic isoforms. We conclude that DJ-1 is not an essential component of LBs and Lewy neurites, is expressed mainly by astrocytes in human brain tissue and is sensitive to oxidative stress conditions. These results are consistent with the hypothesis that neuronal-glial interactions are important in the pathophysiology of Parkinson's disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available