4.8 Article

Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts

Journal

CELL RESEARCH
Volume 14, Issue 1, Pages 16-26

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.cr.7290198

Keywords

apoptosis; mechanical stretch; Bcl-2 and its family proteins; mitochondria; cardiomyocyte

Categories

Ask authors/readers for more resources

Heart remodeling is associated with the loss of cardiomyocytes and increase of fibrous tissue owing to abnormal mechanical load in a number of heart disease conditions. In present study, a well-described in vitro sustained stretch model was employed to study mechanical stretch-induced responses in both neonatal cardiomyocytes and cardiac fibroblasts. Cardiomyocytes, but not cardiac fibroblasts, underwent mitochondria-dependent apoptosis as evidenced by cytochrome c (cyto c) and Smac/DIABLO release from mitochondria into cytosol accompanied by mitochondrial membrane potential (Deltapsi(m)) reduction, indicative of mitochondrial permeability transition pore (PTP) opening. Cyclosporin A, an inhibitor of PTP, inhibited stretch-induced cyto c release, Deltapsi(m) reduction and apoptosis, suggesting an important role of mitochondrial PTP in stretch-induced apoptosis. The stretch also resulted in increased expression of the pro-apoptotic Bcl-2 family proteins, including Bax and Bad, in cardiomyocytes, but not in fibroblasts. Bax was accumulated in mitochondria following stretch. Cell permeable Bid-BH3 peptide could induce and facilitate stretch-induced apoptosis and Deltapsi(m) reduction in cardiomyocytes. These results suggest that Bcl-2 family proteins play an important role in coupling stretch signaling to mitochondrial death machinery, probably by targeting to PTP. Interestingly, the levels of p53 were increased at 12 h after stretch although we observed that Bax upregulation and apoptosis occurred as early as 1 h. Adenovirus delivered dominant negative p53 blocked Bax upregulation in cardiomyocytes but showed partial effect on preventing stretch-induced apoptosis, suggesting that p53 was only partially involved in mediating stretch-induced apoptosis. Furthermore, we showed that p21 was upregulated and cyclin B1 was downregulated only in cardiac fibroblasts, which may be associated with G(2)/M accumulation in response to mechanical stretch.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available