4.6 Article

Competitive and noncompetitive inhibition of myocardial cytochrome C oxidase in sepsis

Journal

SHOCK
Volume 21, Issue 2, Pages 110-114

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.shk.0000108400.56565.ab

Keywords

sepsis; animal models; oxidative phosphorylation; mitochondria; gene expression

Funding

  1. NIGMS NIH HHS [R01 GM-59930, T32 GM007612] Funding Source: Medline

Ask authors/readers for more resources

Sepsis is the most common cause of death in intensive care units worldwide. The basic pathophysiologic defect in sepsis, causing functional abnormalities in many organ systems, remains elusive. One potential cause is disruption of oxidative phosphorylation in mitochondria. Here, we report that oxidation of cytochrome c by myocardial cytochrome c oxidase, the terminal oxidase in the electron transport chain, is competitively inhibited early in experimental sepsis (cecal ligation with single or double 23-gauge puncture) in mice. In severe sepsis (cecal ligation and double puncture, 75% mortality at 48 h), inhibition becomes noncompetitive by 48 h. The development of noncompetitive inhibition is associated with a decrease in heme a,a(3) content, which is the key active site in the functional subunit (1) and catalyzes the reduction of molecular oxygen. In addition, there are persistently decreased steady-state levels of subunit I mRNA and protein after cecal ligation and double puncture. Both loss of heme and loss of subunit I could explain the observed irreversible inhibition of cytochrome c oxidase. Noncompetitive inhibition of cytochrome c oxidase may interrupt oxidative phosphorylation, leading to sepsis-associated cardiac depression. Importantly, this abnormality may underlie sepsis-associated dysfunction in other organ systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available