4.6 Article

Evidence of sustained skeletal benefits from impact-loading exercise in young females: A 3-year longitudinal study

Journal

JOURNAL OF BONE AND MINERAL RESEARCH
Volume 19, Issue 2, Pages 314-322

Publisher

WILEY
DOI: 10.1359/JBMR.0301222

Keywords

peak bone mass; exercise; girls; heredity; longitudinal

Ask authors/readers for more resources

Introduction: Weight-bearing exercise is beneficial for peak bone mass development. However, whether skeletal benefits achieved with exercise are maintained if training remains intensive throughout the pubertal years is not entirely clear. The influence of familial resemblance for bone mass remains undefined in physically active versus inactive children. The dim of this study was to investigate the long-term influences of impact-loading exercise on bone quantity and quality in young females after controlling for growth, maturation, and hereditary factors. Materials and Methods: At baseline, 45 gymnasts (G) and 52 normally active controls (C) 8-17 years of age were recruited. Anthropometry, diet, physical activity, and quantitative ultrasound (QUS) were measured annually for 3 consecutive years. DXA scans of total body (TB) and lumbar spine (LS) bone mineral content (BMC) and density (BMD) were taken three times at 1-year intervals. A multilevel regression model was fitted, and the independent effects of body size, maturity, physical activity, and diet were identified over time. To assess heredity influences, 27 G mothers and 26 C mothers volunteered for cross-sectional measurements of anthropometry, QUS, and BMC/BMD. Results and Conclusions: Gymnasts were smaller and lighter (as were their mothers) than controls, but they had significantly higher QUS and axial and appendicular BMC and BMD, with > 170 g more bone mineral in TB across puberty (after adjustment for maturity [years from peak height velocity], height, weight, energy, and protein intake). Gymnasts had up to 24-51% higher BMC and 13-28% higher BMD, depending on skeletal site. These results provide evidence of sustained skeletal benefits from impact-loading exercise, which are unlikely to result entirely from heredity, throughout pubertal years.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available