4.7 Article

Structure and expression profile of the sucrose synthase multigene family in Arabidopsis

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 55, Issue 396, Pages 397-409

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erh047

Keywords

Arabidopsis; functional genomics; seed development; stress response; sucrose synthase; transcriptional profiling

Categories

Ask authors/readers for more resources

The release of the complete genome sequence of Arabidopsis enabled the largest sucrose synthase family described to date, comprising six distinct members, for which expression profiles were not yet available, to be identified. Aimed at understanding the precise function of each AtSUS member among the family, a comparative study of protein structure was performed, together with an expression profiling of the whole gene family using the technique of real-time quantitative reverse transcriptase-polymerase chain reaction. Transcript levels were analysed in several plant organs, including both developing and germinating seeds. A series of treatments such as oxygen deprivation, dehydration, cold treatment, or various sugar feedings were then carried out to characterize the members of the family further. The AtSUS genes exhibit distinct but partially redundant expression profiles. Under anaerobic conditions, for instance, both AtSUS1 and AtSUS4 mRNA levels increase, but in a distinct manner. AtSUS2 is specifically and highly induced in seeds at 12 d after flowering and appears as a marker of seed maturation. AtSUS3 seems to be induced in various organs under dehydration conditions including leaves deprived of water or submitted to osmotic stress as well as late-maturing seeds. AtSUS5 and AtSUS6 are expressed in nearly all plant organs and do not exhibit any transcriptional response to stresses. These results add new insights on the expression of SUS genes and are discussed in relation to distinct functions for each member of the AtSUS family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available