4.6 Article

Bunyamwera bunyavirus RNA synthesis requires cooperation of 3′- and 5′-terminal sequences

Journal

JOURNAL OF VIROLOGY
Volume 78, Issue 3, Pages 1129-1138

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.78.3.1129-1138.2004

Keywords

-

Categories

Ask authors/readers for more resources

Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative-sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are each transcribed to yield a single mRNA and are replicated to generate an antigenome that acts as a template for synthesis of further genomic strands. As for all negative-sense RNA viruses, the 3'- and 5'-terminal nontranslated regions (NTRs) of the BUNV S, M, and L segments exhibit nucleotide complementarity and, except for one conserved U-G pairing, this complementarity extends for 15, 18, and 19 nucleotides, respectively. We investigated whether the complementarity of 3' and 5' NTRs reflected a functional requirement for terminal cooperation to promote BUNV RNA synthesis or, alternatively, was a consequence of genomic and antigenomic NTRs having similar functions requiring sequence conservation. We show that cooperation between 3'- and 5'-NTR sequences is required for BUNV RNA synthesis, and our results suggest that this cooperation is due to nucleotide complementarity allowing 3' and 5' NTRs to associate through base-pairing interactions. To examine the importance of complementarity in promoting BUNV RNA synthesis, we utilized a competitive replication assay able to examine the replication ability of all possible combinations of interacting nucleotides within a defined region of BUNV 3' and 5' NTRs. We show here that maximal RNA replication was signaled when sequences exhibiting perfect complementarity within 3' and 5' NTRs were selected.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available