4.2 Article Proceedings Paper

Biofunctional rapid prototyping for tissue-engineering applications:: 3D bioplotting versus 3D printing

Journal

Publisher

WILEY
DOI: 10.1002/pola.10807

Keywords

rapid prototyping; tissue engineering; lysine ethyl ester diisocyanate; polyurethanes; scaffolds; 3D printing; 3D bioplotting; biomaterials; biological applications of polymers

Ask authors/readers for more resources

Two important rapid-prototyping technologies (3D Printing and 3D Bioplotting) were compared with respect to the computer-aided design and free-form fabrication of biodegradable polyurethane scaffolds meeting the demands of tissue-engineering applications. Aliphatic polyurethanes were based on lysine ethyl ester diisocyanate and isophorone diisocyanate. Layer-by-layer construction of the scaffolds was performed by 3D Printing, that is, bonding together starch particles followed by infiltration and partial crosslinking of starch with lysine ethyl ester diisocyanate. Alternatively, the 3D Bioplotting process permitted three-dimensional dispensing and reactive processing of oligoetherurethanes derived from isophorone diisocyanate, oligoethylene oxide, and glycerol. The scaffolds were characterized with X-ray microtomography, scanning electron microscopy, and mechanical testing. Osteoblast-like cells were seeded on such scaffolds to demonstrate their potential in tissue engineering. (C) 2003 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available