4.5 Article

The activation of G-protein gated inwardly rectifying K+ channels by a cloned Drosophila melanogaster neuropeptide F-like receptor

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 19, Issue 3, Pages 570-576

Publisher

WILEY
DOI: 10.1111/j.0953-816X.2003.03141.x

Keywords

G-protein-coupled receptor; inwardly rectifying potassium channels; mRNA expression; neuropepticle F receptor; pharmacology; Xenopus oocyte expression

Categories

Ask authors/readers for more resources

A Drosophila melanogaster G-protein-coupled receptor (NPFR76F) that is activated by neuropeptide F-like peptides has been expressed in Xenopus oocytes to determine its ability to regulate heterologously expressed G-protein-coupled inwardly rectifying potassium channels. The activated receptor produced inwardly rectifying potassium currents by a pertussis toxin-sensitive G-protein-mediated pathway and the effects were reduced in the presence of proteins, such as the betaARK1 carboxy-tail fragment and a-transducin, which bind G-protein betagamma-subunits. Short Drosophila NPF-like peptides were more potent than long NPF-like peptides at coupling the receptor to the activation of inwardly rectifying potassium channels. The putative endogenous short Drosophila NPF-like peptides showed agonist-specific coupling depending on whether their actions were assessed as the activation of the inwardly rectifying potassium channels or as the activation of endogenous inward chloride channels through a co-expressed promiscuous G-protein, G(alpha16). As inwardly rectifying potassium channels are known to be encoded in the Drosophila genome and the NPFR76F receptor is widely expressed in the Drosophila nervous system, the receptor could function to control neuronal excitability or slow wave potential generation in the Drosophila nervous system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available