4.2 Article

Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development

Journal

LIPIDS
Volume 39, Issue 2, Pages 97-109

Publisher

WILEY
DOI: 10.1007/s11745-004-1207-5

Keywords

-

Ask authors/readers for more resources

We identified and quantified the hydroperoxides, hydroxides, epoxides, isoprostanes, and core aldehydes of the major phospholipids as the main components of the oxophospholipids (a total of 5-25 pmol/mumol phosphatidylcholine) in a comparative study of human atheroma from selected stages of lesion development. The developmental stages examined included fatty streak, fibrous plaque, necrotic core, and calcified tissue. The lipid analyses were performed by normal-phase HPLC with on-line electrospray MS using conventional total lipid extracts. There was great variability in the proportions of the various oxidation products and a lack of a general trend. Specifically, the early oxidation products (hydroperoxides and epoxides) of the glycerophosphocholines were found at the advanced stages of the plaques in nearly the same relative abundance as the more advanced oxidation products (core aldehydes and acids). The anticipated linear accumulation of the more stable oxidation products with progressive development of the atherosclerotic plaque was not apparent. It is therefore suggested that lipid infiltration and/or local peroxidation is a continuous process characterized by the formation and destruction of both early and advanced products of lipid oxidation at all times. The process of lipid deposition appears to have been subject to both enzymatic and chemical modification of the normal tissue lipids. Clearly, the appearance of new and disproportionate old lipid species excludes randomness in any accumulation of oxidized LDL lipids in atheroma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available