4.3 Article

How can transforming growth factor beta be targeted usefully to combat liver fibrosis?

Journal

EUROPEAN JOURNAL OF GASTROENTEROLOGY & HEPATOLOGY
Volume 16, Issue 2, Pages 123-126

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00042737-200402000-00001

Keywords

transforming growth factor-beta; fibrosis; collagen; matrix metalloproteinase; tissue inhibitor of matrix metalloproteinases; extracellular matrix; connective tissue growth factor; antifibrotic

Ask authors/readers for more resources

Blockade of transforming growth factor beta (TGF-beta) activity in vivo in animal models has proven to be an effective means of inhibiting the fibrotic response to injury in various organs. Similarly, transgenic animals in which TGF-beta1 expression is artificially enhanced show marked spontaneous fibrosis or increased fibrotic response to injury. TGF-beta is known to effect fibroplasias, not only by its well known action of increasing extracellular matrix synthesis but also by coordinately regulating key proteins which mediate connective tissue homeostasis. This includes down-regulation of interstitial collagenase and other matrix metalloproteinases and up-regulation of antiproteases such as tissue inhibitor of metalloproteinase I and plasminogen activator inhibitor. Whilst inhibition of TGF-beta activity appears to be well tolerated in rodents over several weeks, the ultimately lethal phenotype of TGF-beta1 knockout mice warns us that this pluripotent cytokine is essential for normal health. Therefore, downstream pathways activated by TGF-beta, which might be specific for its fibrotic effects, might be more useful targets for human fibrotic disease therapy. For example, the TGF-beta response protein connective tissue growth factor may be a good target for antifibrotics but definitive evidence awaits development of suitable genetically modified animal models and specific inhibitors. (C) 2004 Lippincott Williams Wilkins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available