4.6 Article

Dynamics of Berry-phase polarization in time-dependent electric fields -: art. no. 085106

Journal

PHYSICAL REVIEW B
Volume 69, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.085106

Keywords

-

Ask authors/readers for more resources

We consider the flow of polarization current J=dP/dt produced by a homogeneous electric field E(t) or by rapidly varying some other parameter in the Hamiltonian of a solid. For an initially insulating system and a collisionless time evolution, the dynamic polarization P(t) is given by a nonadiabatic version of the King-Smith-Vanderbilt geometric-phase formula. This leads to a computationally convenient form for the Schrodinger equation where the electric field is described by a linear scalar potential handled on a discrete mesh in reciprocal space. Stationary solutions in sufficiently weak static fields are local minima of the energy functional of Nunes and Gonze. Such solutions only exist below a critical field that depends inversely on the density of k points. For higher fields they become long-lived resonances, which can be accessed dynamically by gradually increasing E. As an illustration the dielectric function in the presence of a dc bias field is computed for a tight-binding model from the polarization response to a step-function discontinuity in E(t), displaying the Franz-Keldysh effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available