4.4 Article

Master curves for gas amplification in low vacuum and environmental scanning electron microscopy

Journal

ULTRAMICROSCOPY
Volume 99, Issue 1, Pages 35-47

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0304-3991(03)00121-9

Keywords

environmental SEM; electron microscope design and characterization; low vacuum SEM; gas amplification; imaging

Categories

Ask authors/readers for more resources

The concept of universal amplification profiles for gas cascade amplification of signals in low vacuum and environmental scanning electron microscopes is demonstrated both experimentally and theoretically using water vapor. For a given gas, cascade amplification gain profiles can be plotted onto a single master curve where the independent reduced parameter is the ratio of pressure to amplification field strength. When plotted in this fashion, both desired secondary electron and spurious background signal components fall onto respective master curves, with the amplitude being a function of anode bias only. These master curves can be described by simple Townsend Gas Capacitor equations using only two gas-specific parameters. As long as single scattering conditions apply, this approach allows for simplified, direct comparison of the gain characteristics of different gases and allows more intelligent selection of imaging conditions. The utility of treating signal amplification in this manner is demonstrated through a series of images collected under a variety of conditions, but with the ratio of pressure to amplification field strength kept constant. In practice, the range of operational parameter space in which this description can be applied to imaging is limited, as images typically have a mixture of secondary and backscattered contributions. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available