4.7 Article

Flux coupling analysis of genome-scale metabolic network reconstructions

Journal

GENOME RESEARCH
Volume 14, Issue 2, Pages 301-312

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gr.1926504

Keywords

-

Ask authors/readers for more resources

In this paper, we introduce the Flux Coupling Finder (FCF) framework for elucidating the topological and flux connectivity features of genome-scale metabolic networks. The framework is demonstrated on genome-scale metabolic reconstructions of Helicobacter pylori, Escherichia coli, and Saccharomyces cerevisiae. The analysis allows one to determine whether any two metabolic fluxes, v(1) and v(2), are (1) directionally coupled, if a non-zero flux for v(1) implies a non-zero flux for v(2) but not necessarily the reverse; (2) partially coupled, if a non-zero flux for v(1) implies a non-zero, though variable, flux for v(2) and vice versa; or (3) fully coupled, if a non-zero flux for v(1) implies not only a non-zero but also a fixed flux for v(2) and vice versa. Flux coupling analysis also enables the global identification of blocked reactions, which are all reactions incapable of carrying flux under a certain condition; equivalent knockouts, defined as the set of all possible reactions whose deletion forces the flux through a particular reaction to zero; and sets of affected reactions denoting all reactions whose fluxes are forced to zero if a particular reaction is deleted. The FCF approach thus provides a novel and versatile tool for aiding metabolic reconstructions and guiding genetic manipulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available