4.8 Article

Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0305421101

Keywords

-

Funding

  1. NIGMS NIH HHS [GM 21793, R01 GM021793] Funding Source: Medline

Ask authors/readers for more resources

Genome-wide DNA elimination accompanies development of the somatic macronucleus from the germ-line micronucleus during the sexual process of conjugation in the ciliated protozoan Tetrahymena thermophila. Small RNAs, referred to as scan RNAs (scnRNAs), that accumulate only during conjugation are highly enriched in the eliminated sequences, and mutations that prevent DNA elimination also affect the accumulation of scnRNAs, suggesting that an RNA interference (RNAi)-like mechanism is involved in DNA elimination. Histone H3 that is methylated at lysine 9 (K9) is a hallmark of heterochromatin and, in Tetrahymena, is found only in developing macronuclei (anlagen) in association with chromatin containing the sequences undergoing elimination. In this article, we demonstrate that a mutation in the TWl1 gene that eliminates the accumulation of scnRNAs also abolishes H3 methylation at K9. We created mutant strains of Tetrahymena in which the only major H3 contained a K9Q mutation. These mutants accumulated scnRNAs normally during conjugation but showed dramatically reduced efficiency of DNA elimination. These results provide strong genetic evidence linking an RNAi-like pathway, H3 K9 methylation, and DNA elimination in Tetrahymena.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available