4.8 Article

A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor

Journal

NATURE
Volume 427, Issue 6975, Pages 615-618

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02310

Keywords

-

Ask authors/readers for more resources

Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics(1). One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III-V semiconductor compounds(2-6) and/or electro-optic materials such as lithium niobate(7-9). To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only similar to20 MHz (refs 10, 11), although it has been predicted theoretically that a similar to1-GHz modulation frequency might be achievable in some device structures(12,13). Here we describe an approach based on a metal-oxide-semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available