4.6 Article

Molecular characterization of a phospholipase D generating anandamide and its congeners

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 7, Pages 5298-5305

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M306642200

Keywords

-

Ask authors/readers for more resources

Anandamide (N-arachidonoylethanolamine) is known to be an endogenous ligand of cannabinoid and vanilloid receptors. Its congeners (collectively referred to as N-acylethanolamines) also show a variety of biological activities. These compounds are principally formed from their corresponding N-acyl-phosphatidylethanolamines by a phosphodiesterase of the phospholipase D-type in animal tissues. We purified the enzyme from rat heart, and by the use of the sequences of its internal peptides cloned its complementary DNAs from mouse, rat, and human. The deduced amino acid sequences were composed of 393-396 residues, and showed that the enzyme has no homology with the known phospholipase D enzymes but is classified as a member of the zinc metallohydrolase family of the beta-lactamase fold. As was overexpressed in COS-7 cells, the recombinant enzyme generated anandamide and other N-acylethanolamines from their corresponding N-acyl-phosphatidylethanolamines at comparable rates. In contrast, the enzyme was inactive with phosphatidylcholine and phosphatidylethanolamine. Assays of the enzyme activity and the messenger RNA and protein levels revealed its wide distribution in murine organs with higher contents in the brain, kidney, and testis. These results confirm that a specific phospholipase D is responsible for the generation of N-acylethanolamines including anandamide, strongly suggesting the physiological importance of lipid molecules of this class.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available