4.8 Article

Phase behavior and selectivity of DNA-linked nanoparticle assemblies

Journal

PHYSICAL REVIEW LETTERS
Volume 92, Issue 6, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.92.068302

Keywords

-

Ask authors/readers for more resources

We propose a model that can account for the experimentally observed phase behavior of DNA-nanoparticle assemblies [R. Jin et al., J. Am. Chem. Soc. 125, 1643 (2003); T. A. Taton et al., Science 289, 1757 (2000)]. The binding of DNA-coated nanoparticles by dissolved DNA linkers can be described by exploiting an analogy with quantum particles obeying fractional statistics. In accordance with experimental findings, we predict that the phase-separation temperature of the nanocolloids increases with the DNA coverage of the colloidal surface. Upon the addition of salt, the demixing temperature increases logarithmically with the salt concentration. Our analysis suggests an experimental strategy to map microscopic DNA sequences onto the macroscopic phase behavior of the DNA-nanoparticle solutions. Such an approach should enhance the efficiency of methods to detect (single) mutations in specific DNA sequences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available