4.6 Article

Mutations in a conserved motif inhibit single-stranded DNA binding and recombination mediator activities of bacteriophage T4 UvsY protein

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 7, Pages 6077-6086

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M311557200

Keywords

-

Funding

  1. NIGMS NIH HHS [GM48847] Funding Source: Medline

Ask authors/readers for more resources

The UvsY recombination mediator protein is critical for homologous recombination in bacteriophage T4. UvsY uses both protein-protein and protein-DNA interactions to mediate the assembly of the T4 UvsX recombinase onto single-stranded (ss) DNA, forming presynaptic filaments that initiate DNA strand exchange. UvsY helps UvsX compete with Gp32, the T4 ssDNA-binding protein, for binding sites on ssDNA, in part by destabilizing Gp32-ssDNA interactions, and in part by stabilizing UvsX-ssDNA interactions. The relative contributions of UvsY-ssDNA, UvsY-Gp32, UvsY-UvsX, and UvsY-UvsY interactions to these processes are only partially understood. The goal of this study was to isolate mutant forms of UvsY protein that are specifically defective in UvsY-ssDNA interactions, so that the contribution of this activity to recombination processes could be assessed independent of other factors. A conserved motif of UvsY found in other DNA-binding proteins was targeted for mutagenesis. Two missense mutants of UvsY were isolated in which ssDNA binding activity is compromised. These mutants retain self-association activity, and form stable associations with UvsX and Gp32 proteins in patterns similar to wild-type UvsY. Both mutants are partially, but not totally, defective in stimulating UvsX-catalyzed recombination functions including ssDNA-dependent ATP hydrolysis and DNA strand exchange. The data are consistent with a model in which UvsY plays bipartite roles in presynaptic filament assembly. Its protein-ssDNA interactions are suggested to moderate the destabilization of Gp32-ssDNA, whereas its protein-protein contacts induce a conformational change of the UvsX protein, giving UvsX a higher affinity for the ssDNA and allowing it to compete more effectively with Gp32 for binding sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available