4.5 Article

Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode

Journal

ANALYTICAL BIOCHEMISTRY
Volume 325, Issue 2, Pages 285-292

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2003.10.040

Keywords

hemoglobin; carbon nanotube; direct electron transfer; bioelectrocatalysis; hydrogen peroxide

Ask authors/readers for more resources

A stable suspension of carbon nanotube (CNT) can be obtained by dispersing the CNT in the solution of the surfactant cetyltrimethylammonium bromide. CNT has promotion effects on the direct electron transfer of hemoglobin (Hb), which was immobilized onto the surface of CNT. The direct electron transfer rate of Hb was greatly enhanced after it was immobilized onto the surface of CNT. Cyclic voltammetric results showed a pair of well-defined redox peaks, which corresponded to the direct electron transfer of Hb, with the formal potential (E-0') at about -0.343 V (vs. saturated calomel electrode) in the phosphate buffer solution (pH 6.8). The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (k(s)) and the value of formal potential (e) were estimated. The dependence of E-0' on solution pH indicated that the direct electron transfer reaction of Hb is a one-electron transfer coupled with a one-proton transfer reaction process. The experimental results also demonstrated that the immobilized Hb retained its bioelectrocatalytic activity to the reduction of H2O2. The electrocatalytic current was proportional to the concentration of H2O2 at least up to 20 mM. (C) 2003 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available